The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo

نویسندگان

  • Bryan Zeitler
  • Karsten Weis
چکیده

Nucleocytoplasmic transport occurs through gigantic proteinaceous channels called nuclear pore complexes (NPCs). Translocation through the NPC is exquisitely selective and is mediated by interactions between soluble transport carriers and insoluble NPC proteins that contain phenylalanine-glycine (FG) repeats. Although most FG nucleoporins (Nups) are organized symmetrically about the planar axis of the nuclear envelope, very few localize exclusively to one side of the NPC. We constructed Saccharomyces cerevisiae mutants with asymmetric FG repeats either deleted or swapped to generate NPCs with inverted FG asymmetry. The mutant Nups localize properly within the NPC and exhibit exchanged binding specificity for the export factor Xpo1. Surprisingly, we were unable to detect any defects in the Kap95, Kap121, Xpo1, or mRNA transport pathways in cells expressing the mutant FG Nups. These findings suggest that the biased distribution of FG repeats is not required for major nucleocytoplasmic trafficking events across the NPC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the nucleoporin FG repeat network defines structural and functional features of the nuclear pore complex

Unraveling the organization of the FG repeat meshwork that forms the active transport channel of the nuclear pore complex (NPC) is key to understanding the mechanism of nucleocytoplasmic transport. In this paper, we develop a tool to probe the FG repeat network in living cells by modifying FG nucleoporins (Nups) with a binding motif (engineered dynein light chain-interacting domain) that can dr...

متن کامل

Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1

Interferon stimulation of cells leads to the tyrosine phosphorylation of latent Stat1 and subsequent transient accumulation in the nucleus that requires canonical transport factors. However, the mechanisms that control the predominantly cytoplasmic localization in unstimulated cells have not been resolved. We uncovered that constitutive energy- and transport factor-independent nucleocytoplasmic...

متن کامل

Synthetic hydrogel mimics of the nuclear pore complex display selectivity dependent on FG-repeat concentration and electrostatics.

Synthetic hydrogels were utilized to explore influence of both charge and phenylalanine-glycine (FG) repeat concentration on translocation of select proteins. Hydrogels studied represent a biomimetic platform of the nuclear pore complex (NPC) found in eukaryotic cells. Polyacrylamide/phenylalanine-serine-phenylalanine-glycine (FSFG) peptide copolymers have previously demonstrated similar select...

متن کامل

Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors.

Nuclear pore proteins with phenylalanine-glycine repeats are vital to the functional transport of molecules across the nuclear pore complex. The current study investigates the binding of these FG-nucleoporins to the Cse1p:Kap60p:RanGTP nuclear export complex. Fourteen binding spots for FG-nucleoporin peptides are revealed on the surface of Cse1p, and 5 are revealed on the Kap60p surface. Taken ...

متن کامل

Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.

Nuclear transport proceeds through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope of eukaryotic cells. The Saccharomyces cerevisiae NPC is comprised of 30 nucleoporins (Nups), 13 of which contain phenylalanine-glycine repeats (FG Nups) that bind karyopherins and facilitate the transport of karyopherin-cargo complexes. Here, we characterize the structural properties of S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2004